侵权投诉
订阅
纠错
加入自媒体

电网信息化:大数据+智能电网

2015-09-09 00:14
棒棒书香
关注

  电力大数据是大数据理念、技术和方法在电力行业的实践。电力大数据涉及到发电、输电、变电、配电、用电、调度各环节,是跨单位、跨专业、跨业务数据分析与挖掘,以及数据可视化。

  电力大数据由结构化数据和非结构化构成,随着智能电网建设和物联网的应用,非结构化数据呈现出快速增长的势头,其数量将大大超过结构化数据。电力大数据的特性满足大数据的五个特性,一是数据量大(Volume)、二是处理速度快(Velocity)、三是数据类型多(Variety)、四是价值大(Value)、五是精确性高(Veracity)。

  电力大数据主要来源于电力生产和电能使用的发电、输电、变电、配电、用电和调度各个环节,可大致分为三类:一是电网运行和设备检测或监测数据;二是电力企业营销数据,如交易电价、售电量、用电客户等方面数据;三是电力企业管理数据。通过使用智能电表等智能终端设备可采集整个电力系统的运行数据,再对采集的电力大数据进行系统的处理和分析,从而实现对电网的实时监控;进一步地,结合大数据分析与电力系统模型,可以对电网运行进行诊断、优化和预测,为电网安全、可靠、经济、高效地运行提供保障。

  云计算、大数据分析等信息新技术必将激活电力大数据中蕴含的价值,也必将释放电力大数据的市场潜力。根据GTMResearch的研究分析,到2020年,全世界电力大数据管理系统市场将达到38亿美元的规模,电力大数据的采集、管理、分析与服务行业将迎来前所未有的发展机遇。

  大数据和互联网的关系

  随着博客、社交网络、以及云计算、物联网等技术的兴起,互联网上数据信息正以前所未有的速度增长和累积。互联网用户的互动,企业和政府的信息发布,物联网传感器感应的实时信息每时每刻都在产生大量的结构化和非结构化数据,这些数据分散在整个互联网网络体系内,体量极其巨大。这些数据中蕴含了对经济,科技,教育等等领域非常宝贵的信息。这就是互联网大数据兴起的根源和背景。

  与此同时,深度学习为代表的机器学习算法在互联网领域的广泛使用,使得互联网大数据开始与人工智能进行更为深入的结合,这其中就包括在大数据和人工智能领域领先的世界级公司,如百度,谷歌,微软等。2011年谷歌开始将“深度学习”运用在自己的大数据处理上,互联网大数据与人工智能的结合为互联网大脑的智慧和意识产生奠定了基础。

  大数据助力电网信息化

  智能电网建设离不开电网工程建设的信息化,而在电网工程建设的信息化中,洛斯达具有行业领先优势。

  “经过多年积累,洛斯达在对电网工程的信息化成果总结完善和深化应用过程中,逐步构建了以特高压工程为核心的电网工程大数据平台。”阎平介绍说,“通过积累工程过程中产生的各类大数据,建设了大数据平台,服务于电网工程全生命周期,为工程咨询评审、设计、施工、运行等工作提供信息服务。”

  据了解,在电网规划工作中,洛斯达可以提供涵盖经济、社会、环境、技术等方面的数据作为支撑。在多个电网工程的前期专题研究与可研评审中提供了大量能源资源、电力资源、前期专题、历史工程等十多大类、几十小类的规划大数据,实现对工程各阶段咨询评审业务的有效支撑。

  在设计阶段,可提供天、空、地一体化的全三维数字化作业方式,实现各专业协同工作,极大降低实地勘测工作量,有效缩短工期,大幅提升设计院工作效率和质量。

  在施工过程中,能够进行施工全程监控,更加有效地控制施工质量、安全及进度,实时掌控施工现场情况。在电网运营过程中,能融合电网资源、公共资源以及电网规划、前期、设计、施工、运检、调度、营销等企业核心业务数据,全面真实再现实体大电网及其运营态势,通过数据挖掘与价值提取,推动“一次数据”向“二次数据”转化,实现数据增值,支撑电网管理层科学决策。

  当今世界新一轮科技和创业革命正在蓬勃兴起,数据是基础性资源,也是重要的生产力,大数据与云计算、互联网等新技术相结合,正迅速并日益深刻地改变人们的生产生活方式,从某种程度上说,谁拥有了大数据谁就拥有了未来。洛斯达公司将继续利用大数据技术构建“能源大数据中心”和“工程大数据中心”两个核心平台,为建设能源智库提供信息支撑。

  大数据和工业4.0相依相存

  大数据产业的逐渐成熟,使其成为工业4.0的标配技术之一。在制造业领域,很多机器都安装了一个或或多个微处理器采集生产数据。这些无处不在的传感器和微处理器,形成了极为庞大的数据来源,常规的数据库技术己难以完成捕捉、存储、管理和分析这种大规模的数据集合。而利用大数据技术,则能清晰而有逻辑地对这些数据进行有目的的分析。其给制造业带来的益处包括优化生产与管理流程、降低成本、提高运营效率、实现精准营销等等。大数据技术可以帮助制造业企业掌握并预测以客户为中心的市场状况和变化趋势,并根据数据洞察形成最佳的行动方案和建议。

  事实上,对制造业企业而言,大数据技术的战略意义不仅在于掌握庞大的数据信息,更在于对数据的“加工能力”——对大量的数据进行专业化的处理,使之转化成为对企业有用的信息。制造业企业如果能够在工业环境中建立起大数据平台,提高工厂对不同设备收集的海量信息进行梳理的能力,提高企业信息系统的计算能力和数据消化能力,实现对企业的产品数据、运营数据、销售数据、客户数据的实时而有针对性的分析,并用其指导下一轮的研发、生产、销售和服务。这将会使得企业能够在低成本运营的同时,有效实现按需生产,从而在实现绿色生产的同时,提高企业的经营效率。——这是真正的可持续发展。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号